

Features

- Single Supply Voltage 3.0V to 4.8 V
- Integrated 5GHz Amplifier, SPT2T TX/RX Switch, LNA, and Power Detector Coupler
- $\mathrm{P}_{\text {OUT }}=16 \mathrm{dBm}, 11 \mathrm{n}, 54 \mathrm{Mbps}$ at 2\% Dynamic EVM
- $\mathrm{P}_{\text {OUT }}=16 \mathrm{dBm}$, 11ac HT80 MCS9, 1.8\% Dynamic EVM

Applications

- IEEE802.11a/n/ac WiFi Applications
- Mobile Devices
- Tablets
- Consumer Electronics
- Gaming
- Netbooks and Notebooks
- TV, Monitors, and Video

Package: Laminate, 16 -pin, $3.0 \mathrm{~mm} \times 3.0 \mathrm{~mm} \times 1.05 \mathrm{~mm}$

Functional Block Diagram

Product Description

The RFFM8500 provides a complete integrated solution in a single Front End Module (FEM) for WiFi 802.11a/n systems. The ultra small form factor and integrated matching minimizes the layout area in the customer's application and greatly reduces the number of external components. This simplifies the total front end solution by reducing the bill of materials, system footprint, and manufacturability cost. The RFFM8500 integrates a Power Amplifier (PA), Single Pole Double Throw switch (SP2T), LNA and a power detector coupler for improved accuracy. The device is provided in a $3 \mathrm{~mm} \times 3 \mathrm{~mm} \times 1.0 \mathrm{~mm}$, 16-pin laminate package. This module meets or exceeds the RF Front End needs of IEEE 802.11a/n WiFi RF systems.

	Optimum Technology Matching $®$ Applied		
\square GaAs HBT	\square SiGe BiCMOS	\square GaAs pHEMT	\square GaN HEMT
\square GaAs MESFET	\square Si BiCMOS	\square Si CMOS	\square RF MEMS
\square InGaP HBT	\square SiGe HBT	\square Si BJT	

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage	6.0	$\mathrm{~V}_{\mathrm{DC}}$
Maximum TX and RX Input Power (No Damage)	+10	dBm
Operating Ambient Temperature	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	-40 to +150	${ }^{\circ} \mathrm{C}$
Moisture Sensitivity	$\mathrm{MSL3}$	

A
Caution! ESD sensitive device.
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating condiThe information in th
he in mition in this publication is believed to be accurate and reliable. However, no esponsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free er IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2\% antimony in older.

Parameter	Specification			Unit	Condition	

Note: See RFFM8500 Application Note for 11ac applications schematic.

Parameter	Specification			Unit	Condition

Logic Control Table

Mode	PA_EN	LNA_EN	C_RX
Standby	Low	Low	Low
$802.11 \mathrm{a} / \mathrm{n}$ TX	High	Low	Low
$802.11 \mathrm{a} / \mathrm{n}$ RX Gain	Low	High	High

Pin	Function	Description
$\mathbf{1}$	GND	Ground connection.
$\mathbf{2}$	RX	RF output port for the $802.11 \mathrm{a} / \mathrm{n}$ LNA. Input is matched to 50Ω and DC block is provided.
$\mathbf{3}$	GND	Ground connection.
$\mathbf{4}$	VDD	Supply voltage for the LNA. See applications schematic for biasing and bypassing components.
$\mathbf{5}$	PDET	Power detector voltage for TX section. PDET voltage varies with output power. May need external capacitor for noise decoupling.
$\mathbf{6}$	PA_EN	Control voltage for the PA and TX switch. See truth table for proper settings.
$\mathbf{7}$	NC	Not connected.
$\mathbf{8}$	TX	RF input port for the $802.11 \mathrm{a} / \mathrm{n}$ PA. Input is matched to 50Ω and DC block is provided.
9	NC	Not connected.
$\mathbf{1 0}$	VCC	Supply voltage for the PA. See applications schematic for biasing and bypassing components.
11	VCC	Supply voltage for the PA. See applications schematic for biasing and bypassing components.
$\mathbf{1 2}$	GND	Ground connection.
$\mathbf{1 3}$	ANT	RF bidirectional antenna port matched to 50Ω and is DC blocked internally.
14	GND	Ground connection.
15	C_RX	Receive switch control pin. See switch truth table for proper level.
16	LNA_EN	Control voltage for the LNA.
Pkg Base	GND	Ground connection.

RFFM8500

Package Drawing

1. Shaded area represents Pin 1 location.

$$
\begin{aligned}
& \mathrm{A}=0.200 \times 0.225 \mathrm{~mm} \\
& \mathrm{~B}=0.225 \times 0.200 \mathrm{~mm} \\
& \mathrm{C}=1.750 \times 1.750 \mathrm{~mm}
\end{aligned}
$$

PCB Patterns

Notes:

1. Shaded area represents Pin 1 location.

Notes:

1. Shaded area represents Pin 1 location.
2. Thermal vias for center slug " C " should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, power dissipation and electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout (gerber files are available upon request).

RFFM8500

Applications Schematic

Note:

1. Pins $1,3,7,9,12$, and 14 are not connected internally. These pins can be left floating or grounded. It is recommended to follow the RFMD evaluation board layout.

RFFM8500

RFFM8500 Evaluation Board Layers

Top Layer

Mid Layer 2

Mid Layer 1

Bottom Layer

RFFM8500 Transmit Performance Plots

RFFM8500: EVM vs. Output Power vs. Temperature
RFFM8500: EVM vs. Output Power vs. Temperature
(Freq=5825MHz; MCS7 HT20; Vcc=3.3v; PA_EN=3.1v; 50% duty cycle)

RFFM8500: GAIN vs. Output Power vs. Temperature (Freq=5650MHz; MCS7 HT20; Vcc=3.3v; PA_EN=3.1v; 50\% duty cycle)

RFFM8500 Transmit Performance Plots

RFFM8500 Receive Performance Plots

RFFM8500: RX Noise Figure vs. Frequency vs. Temperature
(Vdd=3.3v; LNA_EN=3.1v)

